Towards a Universal Knowledge Accelerator

Title: Towards a Universal Knowledge Accelerator
Speaker: Aniket Kittur, Associate Professor in Human-Computer Interaction Institute, Carnegie Mellon University
Date: October 17, 2017
Time: 12:00-1:00
Room: Gates-Hillman Center 6501

The human mind remains an unparalleled engine of innovation, with its unique ability to make sense of complex information and find deep analogical connections driving progress in science and technology over the past millennia. The recent explosion of online information available in virtually every domain should present an opportunity for accelerating this engine; instead, it threatens to slow it as the information processing limits of individual minds are reached. 

In this talk I discuss our efforts towards building a universal knowledge accelerator: a system in which the sensemaking people engage in online is captured and made useful for others, leading to virtuous cycles of constantly improving information sources that in turn help people more effectively synthesize and innovate. Approximately 70 billion hours per year in the U.S. alone are spent on complex online sensemaking in domains ranging from scientific literature to health; capturing even a fraction of this could provide significant benefits. We discuss three integrated levels of research that are needed to realize this vision: at the individual level in understanding and capturing higher order cognition; at the computational level in developing new interaction systems and AI partners for human cognition; and at the social level in developing complex and creative crowdsourcing and social computing systems.

Aniket Kittur is an Associate Professor and holds the Cooper-Siegel Chair in the Human-Computer Interaction Institute at Carnegie Mellon University. His research looks at how we can augment the human intellect using crowds and computation. He has authored and co-authored more than 70 peer-reviewed papers, 14 of which have received best paper awards or honorable mentions. Dr. Kittur is a Kavli fellow, has received an NSF CAREER award, the Allen Newell Award for Research Excellence, major research grants from NSF, NIH, Google, and Microsoft, and his work has been reported in venues including Nature News, The Economist, The Wall Street Journal, NPR, Slashdot, and the Chronicle of Higher Education. He received a BA in Psychology and Computer Science at Princeton, and a PhD in Cognitive Psychology from UCLA.

Learning from People

Title: Learning from People
Speaker: Nihar B. Shah, Assistant Professor in Machine Learning and Computer Science, Carnegie Mellon University
Date: October 10, 2017
Time: 12:00-1:00pm
Room: Gates-Hillman Complex 6501

Learning from people represents a new and expanding frontier for data science. Two critical challenges in this domain are of developing algorithms for robust learning and designing incentive mechanisms for eliciting high-quality data. In this talk, I describe progress on these challenges in the context of two canonical settings, namely those of ranking and classification. In addressing the first challenge, I introduce a class of "permutation-based" models that are considerably richer than classical models, and present algorithms for estimation that are both statistically optimal and significantly more robust than prior state-of-the-art methods. I also discuss how these algorithms automatically adapt and are simultaneously also optimal over the classical models, thereby enjoying a surprising a win-win. As for the second challenge, I present a class of "multiplicative" incentive mechanisms, and show that they are the unique mechanisms that can guarantee honest responses. Extensive experiments on a popular crowdsourcing platform reveal that the theoretical guarantees of robustness and efficiency indeed translate to practice, yielding several-fold improvements over prior art.

Nihar B. Shah is an Assistant Professor in the Machine Learning and Computer Science departments at CMU. He is a recipient of the the 2017 David J. Sakrison memorial prize from EECS Berkeley for a "truly outstanding and innovative PhD thesis", the Microsoft Research PhD Fellowship 2014-16, the Berkeley Fellowship 2011-13, the IEEE Data Storage Best Paper and Best Student Paper Awards for the years 2011/2012, and the SVC Aiya Medal 2010. His research interests include statistics, machine learning, and game theory, with a current focus on applications to learning from people.